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Today’s lecture 

•  Clustering and unsupervised learning 

•  Hierarchical clustering 

•  K-means, K-medoids, VQ 



Unsupervised learning 

•  Supervised learning 
– Use labeled data to do something smart 

•  What if the labels don’t exist? 



Some inspiration 

El Capitan, Yosemite National Park 



The way we’ll see it 
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A new question 

•  I see classes, but … 

•  How do I find them? 
– Can I automate this? 
– How any are there? 
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Clustering 

•  Discover classes in data 
– Divide data in sensible clusters 

•  Fundamentally ill-defined problem 
–  There is often no correct solution 

•  Relies on many user choices 



Clustering process 

•  Describe your data using features 
– What’s your objective? 

•  Define a proximity measure 
– How is the feature space shaped? 

•  Define a clustering criterion 
– When do samples make a cluster? 



Know what you want 

•  Features & objective matter 
– Which are the two classes? 



Know what you want 

•  Features & objective matter 
– Which are the two classes? 
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Know your space 

•  Define a sensible proximity measure 



Know your space 

•  Define a sensible proximity measure 

Angle of incidence 

4π 0 2π 



Know your cluster type 

•  What forms a cluster in your space? 



Know your cluster type 

•  What forms a cluster in your space? 
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Planes near airports 



Know your cluster type 

•  What forms a cluster in your space? 

Wavefront position 
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Sound bouncing off a wall 



Know your cluster type 

•  What forms a cluster in your space? 
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How many clusters? 

•  The deeper you look the more you’ll get 



There are no right answers! 

•  Part of clustering is an art 

•  You need to experiment to get there 

•  But some good starting points exist 



How to cluster 

•  Tons of methods 

•  We can use step-based logical steps 
–  e.g., find two closest point and merge, repeat 

•  Or formulate a global criterion 



Hierarchical methods 

•  Agglomerative algorithms 
–  Keep pairing up your data 

 
•  Divisive algorithms 

–  Keep breaking up your data 



Agglomerative Approach 

•  Look at your data points and form pairs 
–  Keep at it 



More formally 

•  Represent data as vectors: 

•  Represent clusters by:  
•  Represent the clustering by: 
 

•  Define a distance measure: 

    X = {xi ,i = 1,…,N}

 C j

    

R = {C j , j = 1,…,m}
e.g.  R = {{x1,x3},x2{x4,x5,x6}}

  d(C j ,Ci)



Agglomerative clustering 

•  Choose: 
•  For t = 1,… 

– Among all clusters in Rt-1, find cluster pair 
{Ci,Cj} such that: 

–  Form new cluster and replace pair:  

 

•  Until we have only one cluster 

    R0 = {Ci = {xi},i = 1,…,N}

  
argmin

i,j
d(Ci ,C j )

   

Cq =Ci ∪C j

Rt = (Rt−1−{Ci ,C j})∪{Cq}



Pretty picture version 

•  Dendrogram 
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Pretty picture two 

•  Venn diagram 
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Cluster distance? 

•  Complete linkage 
– Merge clusters that result to the smallest 

diameter 

•  Single linkage 
– Merge clusters with two closest data points 

•  Group average 
– Use average of distances 



What’s involved 

•  At level t we have N - t clusters 
•  At level t+1 the pairs we consider are: 

 
•  Overall comparisons: 
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Not good for our case 

•  El Capitan picture has 63,140 pixels 
•  How many cluster comparisons is that? 

–  Thanks, but no thanks … 
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Divisive Clustering 

•  Works the other way around 

•  Start with all data in one cluster 

•  Start dividing into sub-clusters 



Divisive Clustering 

•  Choose: 
•  For t = 1,… 

–  For k = 1,…,t 
•  Find least similar sub-clusters in each cluster 

–  Pick the least similar of all: 

– New clustering is now:  
 

•  Until each point is a cluster 

    R0 = {X}

  
argmax

k ,i,j
d(Ck ,i ,Ck ,j )

   Rt = (Rt−1−{Ct})∪{C t ,i ,C t ,j}



Comparison 

•  Which one is faster? 
– Agglomerative 

•  Divisive has a complicated search step 

•  Which one gives better results? 
– Divisive 

•  Agglomerative makes only local observations 



Using cost functions 

•  Given a set of data xi   
•  Define a cost function: 

–  θ are the cluster parameters 
–                       is an assignment matrix 
–  d() is a distance function 

     
J(θ,U) = uijd(xi ,θj )

j
∑

i
∑

U ∈ {0,1}



An iterative solution 

•  We can’t use a gradient method 
–  The assignment matrix is binary-valued 

•  We have two parameters to find θ, U 
–  Fix one and find the other, repeat flip case 
–  Iterate until happy 



Overall process 

•  Initialize θ and iterate: 
–  Estimate U 

 

–  Estimate θ  

–  Repeat until satisfied 
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K-means 

•  Standard and super-popular algorithm 

•  Finds clusters in terms of region centers 

•  Optimizes squared Euclidean distance 

     d(x,θ) = x− θ 2



K-means algorithm 

•  Initialize k means µ 
•  Iterate 

– Assign samples xi to closest mean µ 

–  Estimate µ from assigned samples xi 

•  Repeat until convergence 



Example run – step 1 
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Example run – step 2 
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Example run – step 3 
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Example run – step 4 
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Example run – step 5 
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How well does it work? 

•  Converges to a minimum of cost function 
– Not for all distances though! 

•  Is heavily biased by starting positions 
– Various initialization tricks 

 
•  It’s pretty fast! 



K-Means on El Capitan 
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K-means on El Capitan 



K-means on El Capitan 
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K-means on El Capitan 



One problem 

•  K-means struggles with outliers 
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K-medoids 

•  Medoid: 
–  Least dissimilar data point to all others 
– Not as influenced by outliers as the mean 

•  Replace means with medoids 
–  Redesign k-means as k-medoids 



K-medoids 
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Vector Quantization 

•  Use of clustering for compression 
–  Keep a codebook (≈ k-means) 
–  Transmit nearest codebook vector instead of 

current sample 

•  We transmit only the cluster index, not the 
entire data for each sample 



Simple example 
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Vector Quantization in Audio 
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Recap 

•  Hierarchical clustering 
– Agglomerative, Divisive 
–  Issues with performance 

•  K-means 
–  Fast and easy 
–  K-medoids for more robustness (but slower) 


