
Clustering

CS498

Today’s lecture

•  Clustering and unsupervised learning

•  Hierarchical clustering

•  K-means, K-medoids, VQ

Unsupervised learning

•  Supervised learning
– Use labeled data to do something smart

•  What if the labels don’t exist?

Some inspiration

El Capitan, Yosemite National Park

The way we’ll see it

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Red

Green

Bl
ue

A new question

•  I see classes, but …

•  How do I find them?
– Can I automate this?
– How any are there?

•  Answer: Clustering 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Red

Green
Bl
ue

Clustering

•  Discover classes in data
– Divide data in sensible clusters

•  Fundamentally ill-defined problem
–  There is often no correct solution

•  Relies on many user choices

Clustering process

•  Describe your data using features
– What’s your objective?

•  Define a proximity measure
– How is the feature space shaped?

•  Define a clustering criterion
– When do samples make a cluster?

Know what you want

•  Features & objective matter
– Which are the two classes?

Know what you want

•  Features & objective matter
– Which are the two classes?

Player’s height

P
la

ye
r’s

 k
no

w
le

dg
e

of
 e

nt
om

ol
og

y
Basketball player recruiting

Know your space

•  Define a sensible proximity measure

Know your space

•  Define a sensible proximity measure

Angle of incidence

4π 0 2π

Know your cluster type

•  What forms a cluster in your space?

Know your cluster type

•  What forms a cluster in your space?

Speed

A
lti

tu
de

Planes near airports

Know your cluster type

•  What forms a cluster in your space?

Wavefront position

In
te

ns
ity

Sound bouncing off a wall

Know your cluster type

•  What forms a cluster in your space?

East

Ants departing colony

West

South

North

How many clusters?

•  The deeper you look the more you’ll get

There are no right answers!

•  Part of clustering is an art

•  You need to experiment to get there

•  But some good starting points exist

How to cluster

•  Tons of methods

•  We can use step-based logical steps
–  e.g., find two closest point and merge, repeat

•  Or formulate a global criterion

Hierarchical methods

•  Agglomerative algorithms
–  Keep pairing up your data

•  Divisive algorithms

–  Keep breaking up your data

Agglomerative Approach

•  Look at your data points and form pairs
–  Keep at it

More formally

•  Represent data as vectors:

•  Represent clusters by:
•  Represent the clustering by:

•  Define a distance measure:

 X = {xi ,i = 1,…,N}

 C j

R = {C j , j = 1,…,m}
e.g. R = {{x1,x3},x2{x4,x5,x6}}

 d(C j ,Ci)

Agglomerative clustering

•  Choose:
•  For t = 1,…

– Among all clusters in Rt-1, find cluster pair
{Ci,Cj} such that:

–  Form new cluster and replace pair:

•  Until we have only one cluster

 R0 = {Ci = {xi},i = 1,…,N}

argmin

i,j
d(Ci ,C j)

Cq =Ci ∪C j

Rt = (Rt−1−{Ci ,C j})∪{Cq}

Pretty picture version

•  Dendrogram

 x1 x2 x3 x4 x5 R0

 R1 R2

 R3

 R4

S
im

ilarity

Pretty picture two

•  Venn diagram

 x1

 x2

 x3 x4 x5

R1

R2

R3
R4

Cluster distance?

•  Complete linkage
– Merge clusters that result to the smallest

diameter

•  Single linkage
– Merge clusters with two closest data points

•  Group average
– Use average of distances

What’s involved

•  At level t we have N - t clusters
•  At level t+1 the pairs we consider are:

•  Overall comparisons:

N −t

2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
≡

(N −t)(N −t−1)
2

N −t

2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟t=0

N−1

∑ ≡
(N −1)N(N +1)

6

Not good for our case

•  El Capitan picture has 63,140 pixels
•  How many cluster comparisons is that?

–  Thanks, but no thanks …

N −t

2
⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟t=0

N−3

∑ = 41,946,968,141,536

Divisive Clustering

•  Works the other way around

•  Start with all data in one cluster

•  Start dividing into sub-clusters

Divisive Clustering

•  Choose:
•  For t = 1,…

–  For k = 1,…,t
•  Find least similar sub-clusters in each cluster

–  Pick the least similar of all:

– New clustering is now:

•  Until each point is a cluster

 R0 = {X}

argmax

k ,i,j
d(Ck ,i ,Ck ,j)

 Rt = (Rt−1−{Ct})∪{C t ,i ,C t ,j}

Comparison

•  Which one is faster?
– Agglomerative

•  Divisive has a complicated search step

•  Which one gives better results?
– Divisive

•  Agglomerative makes only local observations

Using cost functions

•  Given a set of data xi
•  Define a cost function:

–  θ are the cluster parameters
–  is an assignment matrix
–  d() is a distance function

J(θ,U) = uijd(xi ,θj)

j
∑

i
∑

U ∈ {0,1}

An iterative solution

•  We can’t use a gradient method
–  The assignment matrix is binary-valued

•  We have two parameters to find θ, U
–  Fix one and find the other, repeat flip case
–  Iterate until happy

Overall process

•  Initialize θ and iterate:
–  Estimate U

–  Estimate θ

–  Repeat until satisfied

uij =

1, if d(xi ,θj) = mink d(xi ,θk)
0, otherwise

⎧
⎨
⎪⎪⎪

⎩
⎪⎪⎪

uij

∂d(xi ,θj)
∂θj

= 0
i
∑

K-means

•  Standard and super-popular algorithm

•  Finds clusters in terms of region centers

•  Optimizes squared Euclidean distance

 d(x,θ) = x− θ 2

K-means algorithm

•  Initialize k means µ
•  Iterate

– Assign samples xi to closest mean µ

–  Estimate µ from assigned samples xi

•  Repeat until convergence

Example run – step 1

−6 −4 −2 0 2 4 6 8
−6

−5

−4

−3

−2

−1

0

1

2

Example run – step 2

−6 −4 −2 0 2 4 6 8
−6

−5

−4

−3

−2

−1

0

1

2

Example run – step 3

−6 −4 −2 0 2 4 6 8
−6

−5

−4

−3

−2

−1

0

1

2

Example run – step 4

−6 −4 −2 0 2 4 6 8
−6

−5

−4

−3

−2

−1

0

1

2

Example run – step 5

−6 −4 −2 0 2 4 6 8
−6

−5

−4

−3

−2

−1

0

1

2

How well does it work?

•  Converges to a minimum of cost function
– Not for all distances though!

•  Is heavily biased by starting positions
– Various initialization tricks

•  It’s pretty fast!

K-Means on El Capitan

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Red

Green

Bl
ue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.5

1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Red
Green

Bl
ue

K-means on El Capitan

K-means on El Capitan

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Red

Green

Bl
ue

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1
0

0.2

0.4

0.6

0.8

1

Red

Green

Bl
ue

K-means on El Capitan

One problem

•  K-means struggles with outliers

−5 0 5 10 15
−30

−20

−10

0

10

20

30

40

−5 0 5 10 15
−30

−20

−10

0

10

20

30

40

K-medoids

•  Medoid:
–  Least dissimilar data point to all others
– Not as influenced by outliers as the mean

•  Replace means with medoids
–  Redesign k-means as k-medoids

K-medoids

−10 0 10 20
−30

−20

−10

0

10

20

30

40
Input data

−10 0 10 20
−30

−20

−10

0

10

20

30

40
k−means

−10 0 10 20
−30

−20

−10

0

10

20

30

40
k−medoids

Vector Quantization

•  Use of clustering for compression
–  Keep a codebook (≈ k-means)
–  Transmit nearest codebook vector instead of

current sample

•  We transmit only the cluster index, not the
entire data for each sample

Simple example

−4 −2 0 2 4 6

−6

−4

−2

0

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

Vector Quantization in Audio
Input sequence
Fr

eq
ue

nc
y

1

2

3

4

C
lu

st
er

Coded sequence

Fr
eq

ue
nc

y

Time

Recap

•  Hierarchical clustering
– Agglomerative, Divisive
–  Issues with performance

•  K-means
–  Fast and easy
–  K-medoids for more robustness (but slower)

